
SPIS Wednesday 10:15am Lecture

Python coding (including some review)

- # comment

o Inline : justifies why the code exists (intent)

- Displaying output:

o print (‘Hello World’) # can take multiple strings

separated by commas

 ex: print (‘Hello’, ‘Goodbye’) #1

 ex: print (‘Hello’ + ‘Goodbye’) #2

A. Hello Goodbye B. HelloGoodbye C. Other

- Scalar Object Types (holds a single item):

o int for whole numbers

o long for really big whole numbers > = 2^31

o float for real numbers

 ex: 0.3 + 0.3 + 0.3

A. 1 B. 1.0 C. 0.9 C. Other D. Error

o bool for True or False

o type (xyz) reports the type of xyz

- Non-Scalar Object Types:

o str for text, known as “strings”

o …more we’ll get to later

- Numeric operators:

o + addition (overloaded for strings)

o - subtraction

o * multiplication (overloaded for strings)

o // integer division

o / float division

 11 divided by 5 gives 5.5 #1

 11 divided by 5 gives 5 #2

A. Use // B. Use / C. Use % D. Other

o % modulus (remainder of division)

o ** power

- Augmented Assignment statements:

o Shorthand code when updating an existing variable

 abc += 3 is the same as: abc = abc + 3

 -=, *=, %=, ….

- Comparison operators (produces a bool result)

o == equality

o != inequality

o < less than

o <= less than or equal to

o > greater than

o >= greater than or equal to

- Bool operators

o and

o or

o not

Terminology:

- Identifier (or symbol) – a name of a variable (or another

entity … like a function, etc)

- scope – where symbols/identifiers/names are known

- block – a delimited grouping of lines of code that execute

sequentially

o Python defines blocks by indenting

- Variables

o = assignment: associates variable names with values

 abc = 1

 abc, bcd = 2, 3

 abc, bcd, cde = 4, 5, 6

o Select names well (consider purpose)

 Bad: i, x, y, temp

 Better: index, result, sum

o Case sensitive

xyz = 10

XYZ = 20

xyz #1

Xyz #2

XYZ #3

A. 10 B. 20 C. Other D. Error

o Can contain letters, digits, _, (can’t start with digit)

o Can’t be reserved words (keywords in language)

o Typing by context

- “if” statements:

o Allows conditional behavior

o …take either one code path or another

o “else” is optional

o “elif” is optional (“else if”)

- “if”statement examples:

abc = 2

if abc == 2:

print (“abc is 2”)

 abc = 1

 if abc == 2:

 print (“abc is 2”)

 else:

 print (“abc is not 2”)

 abc = 1

 if abc == 2:

 print (“abc is 2”)

 elif abc == 3:

 print (“abc is 3”)

 else:

 print (“abc is not 2 or 3”)

day = “Wed”

 time = “After 10:15am”

 if day == “Wed” and time == “After 10:15am”:

 print (“I am in CSE 2154”)

Functions (sometimes known as methods, procedures, or

subroutines)

- What: A sequence of lines of code grouped as a unit

- Why: To encapsulate a functionality or task into a unit to be

performed repeatedly when needed

- Convention: Typically, functions are silent.

o “main” is the boss…the first function that starts program

o Catastrophic situation are exceptions

- Avoid: Code duplication

- Ideals:

o “Single Responsibility Principle”

 A function should be responsible for performing one

and only one task

o “Separation of Concerns”

 The lines of code in a function should be at the same

level of abstraction.

 Lower level ideas should be implemented by

calling another function.

o Shouldn’t be too long

 Lengthy functions can be broken into smaller

functions.

- More Terminology:

o Function definition – Python syntax to define a function

(def keyword, name, parameter list, colon, code)

 Tells Python about your function so it can execute in

the future (when called)

o Function body – code in the function definition

o Function call – line of code to execute function

o Caller – the code that calls your function

o Result – value returned (sent back) from function

o Parameters – inputs to your function (aka arguments)

o Literal – a value that’s not a variable

o Side effect – tasks performed that have an detectable

effect other than returning a value

o Docstring – First line in function with double quote triplet:

 Ex:

def function ():

 """ This function adds two values """

print (1 + 2)

 function.__doc__

 produces Docstring as output

- How to use a function:

o 1. Define the function, then

o 2. Call (or execute) the function when needed

- Attributes:

o Is named for task the code accomplishes

o Has zero or one result produced

 No result – task performed only

 One result – result returned to caller

 Caller wants result

o Typically saved in a variable

o Example:

result = function ()

o Or in a conditional statement

o Example:

if function () == 10:

print (“do something”)

o Has zero or more parameters (aka arguments) in

parenthesis, separated by commas

 Input parameters:

 Information needed for function to perform its

job

 Provides flexibility/variability

o Different inputs mean different outputs

o Body (the code, itself) is indented

o Ends with line of lesser indent

o Defines a “scope”

 Parameters and variables are known by name only

within the function body

Summary:

- “if” statements allow conditional execution of parts of your

code.

- Functions define named, reusable sections of code to perform

desired tasks.

- Parameters allow a function to produce a result based upon

inputs.

